Abstract

In recent years dynamic induction control has shown great potential in reducing wake-to-turbine interaction by increasing the mixing in the wake. With these wake mixing methods the thrust force will vary in time. If applied to a floating offshore wind turbine, it will cause the platform to move. In this paper the effect of the Helix mixing approach on a DTU10MW turbine on the TripleSpar platform and its wake is evaluated. When the Helix mixing approach is applied at Strouhal equal to 0.25, the yaw movement is excited close to the eigenfrequency of the platform resulting in significant yaw angles for small blade pitch angles. To understand the impact of the motion on the wake, the yaw motion is simulated using the free wake vortex method as implemented in Qblade. Under laminar inflow, results show that the windspeed at a distance of 5 rotor diameters downstream can be increased by up to 10% compared to a fixed-bottom turbine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call