Abstract

This study examines the thermal performance of building walls under full sunlight conditions using various insulation strategies. Specifically, it evaluates: (1) the effects of heat on building walls and indoor spaces; (2) the impact of groundwater cooling systems on thermal environments; (3) the influence of phenolic aldehyde insulation layers on heat transfer; and (4) the combined effects of groundwater cooling and phenolic aldehyde thermal insulation. Fluent–CFD (Computational Fluid Dynamics) was used in the study to simulate temperature transmission between the sun, the groundwater cooling system, and both indoor and outdoor spaces. Experimental analysis and simulations reveal that both the phenolic aldehyde insulation layer and the groundwater cooling system effectively reduce heat transfer, with the groundwater cooling system demonstrating the most significant impact. The phenolic aldehyde layer decreases the temperature difference between inner and outer walls by approximately 8 °C. The groundwater cooling system further reduces both inner and outer wall temperatures, helping to maintain cooler indoor environments. Simulation results indicate that, while the phenolic aldehyde layer effectively prevents external heat from penetrating into the room, it does not eliminate heat accumulation. In contrast, the groundwater cooling system efficiently dissipates heat, mitigating this issue. Groundwater analysis shows that maximum temperature differences occur at specific times of the day, with water flow effectively cooling the space. The combined use of the phenolic aldehyde insulation layer and the groundwater cooling system offers superior thermal performance. The phenolic layer provides effective heat blocking, while the groundwater system facilitates heat dissipation, optimizing indoor temperature and reducing air conditioning loads. This combination enhances overall comfort and energy efficiency, with the groundwater cooling system benefiting from reduced flow velocity and lower energy consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.