Abstract

In this article, the authors apply graphics processing unit (GPU) computation to an American option pricing problem via Monte Carlo (MC) simulations and particle swarm optimization (PSO). Given that computations in both MC and PSO can be vectorized and made independent, the valuation can be readily performed on GPUs. As a result, we can increase the accuracy of the valuation by increasing MC paths and particles without spending more time. For example, with a large number of particles (but allocated to GPUs), convergence can be reached in very few steps. The method introduced in this article can be extended to a wide variety of exotic derivatives or a large portfolio of diverse derivatives (known as an eigen portfolio). This is helpful in both trading and risk management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.