Abstract

This paper describes an approach for making use of the components of the experimentally determined rotational diffusion tensor derived from NMR relaxation measurements in macromolecular structure determination. The parameters of the rotational diffusion tensor describe the shape and size of the macromolecule or macromolecular complex, and are therefore complementary to traditional NMR restraints. The structural information contained in the rotational diffusion tensor is not dissimilar to that present in the small-angle region of solution X-ray scattering profiles. We demonstrate the utility of rotational diffusion tensor restraints for protein structure refinement using the N-terminal domain of enzyme I (EIN) as an example and validate the results by solution small-angle X-ray scattering. We also show how rotational diffusion tensor restraints can be used for docking complexes using the dimeric HIV-1 protease and the EIN-HPr complexes as examples. In the former case, the rotational diffusion tensor restraints are sufficient in their own right to determine the position of one subunit relative to another. In the latter case, rotational diffusion tensor restraints complemented by highly ambiguous distance restraints derived from chemical shift perturbation mapping and a hydrophobic contact potential are sufficient to correctly dock EIN to HPr. In each case, the cluster containing the lowest-energy structure corresponds to the correct solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.