Abstract

BackgroundIn Israel, internal medicine admissions are currently reimbursed without accounting for patient complexity. This is at odds with most other developed countries and has the potential to lead to market distortions such as avoiding sicker patients. Our objective was to apply a well-known, freely available risk adjustment model, the Elixhauser model, to predict relevant outcomes among patients hospitalized on the internal medicine service of a large, Israeli tertiary-care hospital.MethodsWe used data from the Shaare Zedek Medical Center, a large tertiary referral hospital in Jerusalem. The study included 55,946 hospitalizations between 01.01.2016 and 31.12.2019. We modeled four patient outcomes: in-hospital mortality, escalation of care (intensive care unit (ICU) transfer, mechanical ventilation, daytime bi-level positive pressure ventilation, or vasopressors), 30-day readmission, and length of stay (LOS). We log-transformed LOS to address right skew. As is usual with the Elixhauser model, we identified 29 comorbid conditions using international classification of diseases codes, clinical modification, version 9. We derived and validated the coefficients for these 29 variables using split-sample derivation and validation. We checked model fit using c-statistics and R2, and model calibration using a Hosmer–Lemeshow test.ResultsThe Elixhauser model achieved acceptable prediction of the three binary outcomes, with c-statistics of 0.712, 0.681, and 0.605 to predict in-hospital mortality, escalation of care, and 30-day readmission respectively. The c-statistic did not decrease in the validation set (0.707, 0.687, and 0.603, respectively), suggesting that the models are not overfitted. The model to predict log length of stay achieved an R2 of 0.102 in the derivation set and 0.101 in the validation set. The Hosmer–Lemeshow test did not suggest issues with model calibration.ConclusionWe demonstrated that a freely-available risk adjustment model can achieve acceptable prediction of important clinical outcomes in a dataset of patients admitted to a large, Israeli tertiary-care hospital. This model could potentially be used as a basis for differential payment by patient complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.