Abstract

AbstractIn this study, the properties of surface acoustic wave (SAW) filters, including phase velocity and electromechanical coupling coefficient (K2) are investigated. The effective surface permittivity (ESP) method was employed to estimate the K2 of bulk materials (single layer) and multi-layer (double-layer and trilayer) structures. In the cases of bulk materials, the calculation results agree with the experimental data, and the errors are less than 7% for quartz. In the cases of double-layer materials, the phase velocity and K2 of various materials, such as ZnO/Diamond and LiNbO3/Diamond, were acquired, and the results demonstrate that LiNbO3/diamond is the optimal choice for high-frequency SAW devices. For the cases of trilayer, the structure of ZnO/PZT/diamond has relatively high K2 and phase velocity. Therefore, this structure is the optimal trilayer structure for high-frequency SAW devices. The study demonstrates that ESP method can be successfully used for estimating SAW properties in piezoelectric multi-layer structures even though the structures contain nonpiezoelectric film (diamond). The proposed numerical computation has the potential to shorten the developing time of SAW device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.