Abstract

Planning systems for real-world applications need the ability to handle concurrency and numeric fluents. Nevertheless, the predominant approach to cope with concurrency followed by the most successful participants in the latest International Planning Competitions (IPC) is still to find a sequential plan that is rescheduled in a post-processing step. We present Temporal Fast Downward (TFD), a planning system for temporal problems that is capable of finding low-makespan plans by performing a heuristic search in a temporal search space. We show how the context-enhanced additive heuristic can be successfully used for temporal planning and how it can be extended to numeric fluents. TFD often produces plans of high quality and, evaluated according to the rating scheme of the last IPC, outperforms all state-of-the-art temporal planning systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.