Abstract

The competing enantioselective conversion (CEC) method is a quick and reliable means to determine absolute configuration. Previously, Bode's chiral acylated hydroxamic acids were used to determine the stereochemistry of primary amines, as well as cyclic and acyclic secondary amines. The enantioselective acylation has been evaluated for 4-, 5-, and 6-membered cyclic secondary amines, including medicinally relevant compounds. The limitations of the method were studied through computational analysis and experimental results. Piperidines with substituents at the 2-position did not behave well unless the axial conformer was energetically accessible, which is consistent with the transition state geometries proposed by Bode and Kozlowski. Control experiments were performed to investigate the cause of degrading selectivity under the CEC reaction conditions. The present study expands the scope of the CEC method for secondary amines and provides a better understanding of the reaction profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call