Abstract
Background/Objectives: Insurance data analysis can be considered as a way of losses reduction by using data mining. It uses the machine learning, pattern recognition and data base theory for discovering the unknown knowledge. Methods/Statistical Analysis: In this paper, information of 2011, third party insurance of Iran insurance company auto has analyzed in Kohgiluyeh and Boyer Ahmad by using the data mining method. Findings: The results show that using clustering algorithms with acceptable clusters will be able to provide a model to identify affecting factors and to determine the effect of them in the profit and loss of auto third party insurance. Applications/Improvements: The algorithm of K-Means has formed the best clustering with 9 clusters that have relatively good quality. It means that has been able to maximize the distance between the cluster and minimize the within cluster distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.