Abstract
This article considers tests for symmetry of the one-dimensional marginal distribution of fractionally integrated processes. The tests are implemented by using an autoregressive sieve bootstrap approximation to the null sampling distribution of the relevant test statistics. The sieve bootstrap allows inference on symmetry to be carried out without knowledge of either the memory parameter of the data or of the appropriate norming factor for the test statistic and its asymptotic distribution. The small-sample properties of the proposed method are examined by means of Monte Carlo experiments, and applications to real-world data are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.