Abstract
Abstract No-arbitrage interest rate models are designed to be consistent with the current term structure of interest rates. The diffusion of the interest rates is often approximated with a tree, in which the scenario-dependent fair price of any security is calculated as the present value of the risk-neutral expectation by backward induction. To use this tree in a portfolio optimization context it is necessary to account for the so-called “market price of risk”. In this paper we present a method to change the conditional probabilities in the Black–Derman–Toy model to the physical (or real) measure, including the market price of risk, and explore the economic implications for expected spot rates and for expected bond returns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.