Abstract
This paper aims to predict male and female camels' mature weight (MW) through various morphological traits using hybrid machine learning (ML) algorithms. For this aim, biometrical measurements such as birth weight (BW), length of face (FL), length of the neck (NL), a girth of the heart (HG), body length (BL), withers height (WH), and hind leg length (HLL) were used to estimate the mature weight for eight camel breeds of Pakistan. In this study, multivariate adaptive regression splines (MARS), random forest (RF), and support vector machine (SVM) were applied to develop prediction models. Furthermore, the artificial bee colony (ABC) algorithm is employed to optimize ML models' internal parameters and improve prediction accuracy. The predictive performance of ML and hybrid models was evaluated on a testing dataset using goodness-of-fit measures such as mean absolute deviation (MAD), mean absolute percentage error (MAPE), coefficient of determination (R2), and root mean square error (RMSE). The results of the study revealed the ABC-SVM model was the best predictive model. The experimental results of this study showed that the proposed ABC-SVM method could effectively improve the accuracy for MW prediction of camels, thus having a research and practical value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.