Abstract

This paper describes a uniform approach to the automation of verification tasks associated with while statements, representation functions for abstract data types, generic program units, and abstract base classes. Program units are annotated with equations containing symbols defined by algebraic axioms. An operation's axioms are developed by using strategies that guarantee crucial properties such as convergence and sufficient completeness. Sets of axioms are developed by stepwise extensions that preserve these properties. Verifications are performed with the aid of a program that incorporates term rewriting, structural induction, and heuristics based on ideas used in the Boyer-Moore prover. The program provides valuable mechanical assistance: managing inductive arguments and providing hints for necessary lemmas, without which formal proofs would be impossible. The successes and limitations of our approaches are illustrated with examples from each domain.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.