Abstract

One of the most transformative experimental techniques in the rise of modern molecular biology and biochemistry was the development of high-resolution sodium dodecyl sulfate polyacrylamide gel electrophoresis, which allowed separation of proteins—including structural proteins—in complex mixtures according to their molecular weights. Its development was intimately tied to investigations of the control of virus assembly within phage-infected cells. The method was developed by Ulrich K. Laemmli working in the virus structural group led by Aaron Klug at the famed Medical Research Council Laboratory for Molecular Biology at Cambridge, UK. While Laemmli was tackling T4 head assembly, I sat at the next bench working on T4 tail assembly. To date, Laemmli’s original paper has been cited almost 300,000 times. His gel procedure and our cooperation allowed us to sort out the sequential protein–protein interactions controlling the viral self-assembly pathways. It is still not fully appreciated that this control involved protein conformational change induced by interaction with an edge of the growing structure. Subsequent efforts of my students and I to understand how temperature-sensitive mutations interfered with assembly were important in revealing the intracellular off-pathway aggregation processes competing with productive protein folding. These misfolding processes slowed the initial productivity of the biotechnology industry. The article below describes the scientific origin, context, and sociology that supported these advances in protein biochemistry, protein expression, and virus assembly. The cooperation and collaboration that was integral to both the Laboratory for Molecular Biology culture and phage genetics fields were key to these endeavors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call