Abstract

We describe an algorithm that explores potential energy surfaces (PES) and finds approximate reaction paths and transition states. A few (≈6) evolving atomic configurations ("climbers") start near a local minimum M1 of the PES. The climbers seek a shallow ascent, low energy, path toward a saddle point S12, cross over to another valley of the PES, and climb down to a new minimum M2 that was not known beforehand. Climbers use both energy and energy derivatives to make individual decisions, and they use relative fitness to make team-based decisions. In sufficiently long runs, they keep exploring and may go through a sequence M1-S12-M2-S23-M3 ... of minima and saddle points without revisiting any of the critical points. We report results on eight small test systems that highlight advantages and disadvantages of the method. We also investigated the PES of Li(8), Al(7)(+), Ag(7), and Ag(2)NH(3) to illustrate potential applications of this new method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.