Abstract

AbstractBecause of spectral shifts from instrument to instrument in the operational NOAA satellite imager longwave infrared channels, the NOAA/National Environmental Satellite, Data, and Information Service (NESDIS) has developed a single-channel land surface temperature (LST) algorithm based on the observed 11-μm radiances, numerical weather prediction data, and radiative transfer modeling that allows for consistent results from the Geostationary Operational Environmental Satellite-I/L (GOES-I/L), GOES-M–P, and Advanced Very High Resolution Radiometer (AVHRR)/1 through 3 sensor versions. This approach is implemented in the real-time NESDIS processing systems [GOES Surface and Insolation Products (GSIP) and Clouds from AVHRR Extended (CLAVR-x)], and in the Pathfinder Atmospheres–Extended (PATMOS-x) climate dataset. An analysis of the PATMOS-x LST against that derived from the upwelling broadband longwave flux at each Surface Radiation Network (SURFRAD) site showed that biases in PATMOS-x were approximately 1 K or less. The standard deviations of the PATMOS-x minus SURFRAD LST biases are generally 2.5 K or less at all sites for all sensors. Using the PATMOS-x minus SURFRAD LST distributions to validate the PATMOS-x cloud detection, the PATMOS-x cloud probability of correct detection values were shown to meet the GOES-R specifications for all sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.