Abstract

In the present study, the applicability of two surfactants including sodium dodecyl sulfate (SDS) and sodium octyl sulfate (SOS) as the matrix for the Matrix-Assisted Laser Desorption/Ionization (MALDI) of several amino acids (phenylalanine (Phe), valine (Val), proline (Pro), alanine (Ala), and tyrosine (Tyr)) is investigated. Also, the effect of the material of the repeller plate of the ionization part of the used time of flight (TOF) mass spectrometer on the spectral patterns of the amino acids is studied. Furthermore, the recorded MALDI spectra of amino acids are compared with their corresponding direct laser desorption/ionization (direct-LDI) TOF mass spectra. It is observed that the SDS is an appropriate matrix for the Na+ transfer to the Phe and Val amino acids, especially, when the Ag metal is selected as the material of the repeller plate. In this case, the peaks of the [M + Na]+ and [M-H + 2Na]+ species are considerably more intense compared to when the NaF salt is used as a Na+ source in the LDI of these amino acids. Unlike Phe and Val, the SDS is not a good matrix for the other selected amino acids. The decrease of the carbonic chain length of the surfactant on the MALDI spectrum of Phe is investigated and it is seen that the mentioned important peaks disappeared in the presence of SOS as the matrix. The density functional theory (DFT) calculation is employed to characterize the structure of [M + Na]+ and [M-H + 2Na]+ species and determine the interaction sites of amino acids for the Na+ attachment. Also, the change in standard Gibbs free energy (∆G°) of the M + Na+ → [M + Na]+ and [M + Na]+ + Na+ → [M-H + 2Na]+ + H+ reactions are calculated. Based on the values of ∆G°, the attachment of the first Na+ to the amino acid takes place in the gas phase while the attachment of the second one to [M + Na]+ is not a favorable process in the gas phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.