Abstract
N-Heterocyclic carbenes (NHCs) are an attractive alternative to thiol ligands when forming self-assembled monolayers on noble-metal surfaces; however, relative to the well-studied thiol monolayers, comparatively little is known about the binding, orientation, and packing of NHC monolayers. Herein, we combine surface-enhanced Raman spectroscopy (SERS) and first-principles theory to investigate how the alkyl "wingtip" groups, i.e., those attached to the nitrogens of N-heterocyclic carbenes, affect the NHC orientation on gold nanoparticles. Consistent with previous literature, smaller wingtip groups lead to stable flat configurations; surprisingly, bulkier wingtips also have stable flat configurations likely due to the presence of an adatom. Comparison of experimental SERS results with the theoretically calculated spectra for flat and vertical configurations shows that we are simultaneously detecting both NHC configurations. In addition to providing information on the adsorbate geometry, this study highlights the extreme SERS enhancement of vibrational modes perpendicular to the surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.