Abstract

The enzymatic attributes of newly found protein sequences are usually determined either by biochemical analysis of eukaryotic and prokaryotic genomes or by microarray chips. These experimental methods are both time-consuming and costly. With the explosion of protein sequences registered in the databanks, it is highly desirable to develop an automated method to identify whether a given new sequence belongs to enzyme or non-enzyme. The discrete wavelet transform (DWT) and support vector machine (SVM) have been used in this study for distinguishing enzyme structures from non-enzymes. The networks have been trained and tested on two datasets of proteins with different wavelet basis functions, decomposition scales and hydrophobicity data types. Maximum accuracy has been obtained using SVM with a wavelet function of Bior2.4, a decomposition scale j=5, and Kyte–Doolittle hydrophobicity scales. The results obtained by the self-consistency test, jackknife test and independent dataset test are encouraging, which indicates that the proposed method can be employed as a useful assistant technique for distinguishing enzymes from non-enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.