Abstract

Metabolism and diet quality play an important role in determining delay mechanisms between an animal ingesting an element and depositing the associated isotope signal in tissue. While many isotope mixing models assume instantaneous reflection of diet in an animal- tissue, this is rarely the case. Here we use data from wildebeest to measure the lag time between ingestion of 34 S and its detection in tail hair. We use time-lagged regression analysis of δ34 S data from GPS-collared blue wildebeest from the Serengeti ecosystem in combination with δ34 S isoscape data to estimate the lag time between an animal ingesting and depositing 34 S in tail hair. The best fitting regression model of δ34 S in tail hair and an individual- position on the δ34 S isoscape is generated assuming an average time delay of 78 days between ingestion and detection in tail hair. This suggests that sulfur may undergo multiple metabolic transitions before being deposited in tissue. Our findings help to unravel the underlying complexities associated with sulfur metabolism and are broadly consistent with results from other species. These findings will help to inform research aiming to apply the variation of δ34 S in inert biological material for geolocation or understanding dietary changes, especially for fast moving migratory ungulates such as wildebeest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.