Abstract
Logographic and alphabetic languages (e.g., Chinese vs. English) have different writing systems linguistically. Languages belonging to the same writing system usually exhibit more sharing information, which can be used to facilitate natural language processing tasks such as neural machine translation (NMT). This article takes advantage of the logographic characters in Chinese and Japanese by decomposing them into smaller units, thus more optimally utilizing the information these characters share in the training of NMT systems in both encoding and decoding processes. Experiments show that the proposed method can robustly improve the NMT performance of both “logographic” language pairs (JA–ZH) and “logographic + alphabetic” (JA–EN and ZH–EN) language pairs in both supervised and unsupervised NMT scenarios. Moreover, as the decomposed sequences are usually very long, extra position features for the transformer encoder can help with the modeling of these long sequences. The results also indicate that, theoretically, linguistic features can be manipulated to obtain higher share token rates and further improve the performance of natural language processing systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.