Abstract

The increased use of areal measurement techniques in engineering geodesy requires the development of adequate areal analysis strategies. Usually, such analysis strategies include a modelling of the data in order to reduce the amount of data while preserving as much information as possible. Free form surfaces like B-splines have been proven to be an appropriate tool to model point clouds. The complexity of those surfaces is among other model parameters determined by the number of control points. The selection of the appropriate number of control points constitutes a model selection task, which is typically solved under consideration of parsimony by trial-and-error procedures. In Harmening and Neuner (J Appl Geod 10(3):139–157, 2016; 11(1):43–52, 2017) a model selection approach based on structural risk minimization was developed for this specific problem. However, neither this strategy, nor standard model selection methods take correlations into account. For this reason, the performance of the developed model selection approach on correlated data sets is investigated and the respective results are compared to those provided by a standard model selection method, the Bayesian Information Criterion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.