Abstract

ABSTRACT Probing statistical distribution of the neutral hydrogen (H i) using the redshifted 21-cm hyperfine-transition spectral line holds the key to understand the formation and evolution of the matter density in the Universe. The two-point statistics of the H i distribution can be estimated by measuring the power spectrum of the redshifted 21-cm signal using visibility correlation. A major challenge in this regard is that the expected signal is weak compared to the foreground contribution from the Galactic synchrotron emission and extragalactic point sources in the observing frequencies. In this work, we investigate the possibility of detecting the power spectrum of the redshifted 21-cm signal by using strong gravitational lensing of the galaxy clusters. This method has the advantage that it only enhances the H i signal and not the diffuse Galactic foreground. Based on four simple models of the cluster potentials, we show that the strong lenses at relatively lower redshifts with more than one dark matter halo significantly enhance the 21-cm signal from the post-reionization era. We discuss the merits and demerits of the method and the future studies required for further investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call