Abstract

For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acoustic wavelengths) or if the stationary phase path is near the critical angle. In such cases, the entire acoustic field must be considered, including inhomogeneous waves associated with diffraction (i.e., those components that vanish with increasing frequency). The energy flow from a continuous-wave monopole point source across the boundary is visualized by tracing acoustic streamlines: those curves whose tangent at every point is parallel to the local acoustic intensity vector, averaged over a wave cycle. It is seen that the acoustic energy flow is not always in line with the "Snell's law" or stationary phase path. Also, plots of acoustic energy streamlines do not display unusual behavior in the vicinity of the critical angle. Finally, it is shown that there exists a law of refraction of acoustic energy streamlines at boundaries with density discontinuities analogous to Snell's law of refraction of ray paths across sound speed discontinuities. Examples include water-to-seabed transmission and water-to-air transmission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call