Abstract
Plants have been used to produce many diverse and valuable recombinant proteins, including subunit vaccines, antibodies and antibody fragments, hormones, blood products, cytokines, and enzymes. Different plant species and platforms have been explored as production hosts, each with unique properties in terms of the gene transfer method, production time, environmental containment, scalability, downstream processing strategy, protein folding and accumulation, and overall costs. Seed-based systems have many advantages because they exploit the natural storage properties of seeds, which facilitate batch processing and distribution. Seeds possess specialized storage organelles that may be used to accumulate recombinant proteins, offering stability both in planta and after harvest in the final preparation/formulation. The post-harvest stabilizing effect of seeds allows recombinant subunit vaccines and antibodies to be delivered via the mucosal route because they are better able to withstand this harsh microenvironment when protected by the plant matrix. Native storage organelles such as starch granules and protein bodies offer this protective effect, but protein storage organelles can also be induced ectopically in vegetative tissues. In this paper, we discuss the technical capabilities of storage organelle-based expression platforms and their potential applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.