Abstract
The use of mass spectrometry to measure hydrogen exchange rates for individual proteins in complex mixtures is described. Incorporation of stable-isotope-labeled (SIL) amino acids into a protein of interest during overexpression in bacteria produced distinctive isotope patterns in mass spectra of peptic peptides from the labeled protein. The isotope pattern was used as a signature for peptides originating from the SIL protein. In addition, stable-isotope labeling simplified identification of the peptic peptides by providing partial amino acid composition information. Despite the complex isotope patterns associated with SIL peptides, hydrogen exchange rates could still be measured for peptides from SIL protein and were found to be the same as exchange rates for unlabeled protein. Hydrogen exchange in a single protein of interest was measured in a complex mixture of proteins, a bacterial cell lysate. This methodology, which includes easy recognition of peptic peptides from the protein(s) of interest during hydrogen exchange studies in heterogeneous systems, will permit analysis of structural properties and dynamics of large protein complexes and complex protein systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.