Abstract

Land-use specific sediment source apportionment using compound specific isotopic tracers occurs with challenges from both contributions from aquatic  and particulate organic matter sources. Additionally, compound specific tracers have often occurred with co-linearity. Challenging our current understanding of erosion processes, previous studies using compound-specific isotopic tracers regularly indicate forests as the dominant source of sediment. We hypothesized that this estimation may be attributed to misclassifying particulate organic matter as a sediment contribution from forests.This study is based in Lake Baldegg (Lucerne, Switzerland) and utilizes the δ13C values of lignin-derived methoxy groups and alkane average chain length as an additional land-use-specific tracer to δ13C fatty acids. Three Suess corrections using different tracer residence times are applied to constrain the changing δ13C values of CO2 in the atmosphere over the last 130 years. To identify changes in sediment sources over the last 130 years, contributions of particulate organic matter are determined, and subsequently removed to apportion only the mineral associated soil fraction. To determine the confidence which can be applied to the model’s output, the model's performance is evaluated with 300 mathematical mixtures. The potential misclassification of forest contributions is investigated by merging particulate organic matter and forest sources to simulate tracers which are unable to discriminate between these two sources.The incorporation of δ13C values of lignin methoxy groups and alkane average chain length as additional tracers successfully expands the problematic one-dimensional mixing line.  Mathematical mixtures demonstrate the improvement of the model’s performance when using both the average chain length and δ13C values of lignin-derived methoxy groups as an additional tracer. Furthermore, they also demonstrate an underestimation of arable contribution. Changes in dominant sediment sources (Forest: pre-1990, Pasture: 1910-1940, Arable: post-1940) highlight the influence of policy-induced land-use changes. Additionally, the study reveals a 37% overestimation of forest contributions to the sediment core due to the inability to discriminate between particulate organic matter and forest sources.The use of δ13C values of lignin methoxy groups as an additional tracer enables the identification of critical points in the 130-year sediment history of Lake Baldegg. We emphasize the importance of incorporating multiple Suess corrections to constrain the effect of multiple turnover times of tracers. While merging forest and particulate organic matter sources did not alter the dominant source over the last 130 years, it highlighted the need of separating these sources for more accurate apportionment. The study contributes valuable insights to sediment dynamics and land-use impacts, offering guidance for environmental management strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call