Abstract

The reactivity and functionality of heme proteins are to a significant extent determined by the conformation of their functional heme groups and by the interaction of axial ligands with their protein environment. This review focuses on experimental methods and theoretical concepts for elucidating symmetry lowering perturbations of the heme induced by the protein environment of the heme pocket. First, we discuss a variety of methods which can be used to probe the electric field at the heme, including spectral hole burning as well as low temperature absorption and room temperature circular dichroism spectroscopy. Second, we show how heme deformations can be described as superposition of deformations along normal coordinates, thereby using the irreducible representations of the D4h point group as a classification tool. Finally, resonance Raman spectroscopy is introduced as a tool to probe the deformations of metalloprophyrins in solution and in protein matrices by measuring and comparing intensities and depolarization properties rather than wavenumber positions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.