Abstract

A mosaic of intact native and human-modified vegetation use can provide important habitat for top predators such as the puma (Puma concolor), avoiding negative effects on other species and ecological processes due to cascade trophic interactions. This study investigates the effects of restoration scenarios on the puma’s habitat suitability in the most developed Brazilian region (São Paulo State). Species Distribution Models incorporating restoration scenarios were developed using the species’ occurrence information to (1) map habitat suitability of pumas in São Paulo State, Southeast, Brazil; (2) test the relative contribution of environmental variables ecologically relevant to the species habitat suitability and (3) project the predicted habitat suitability to future native vegetation restoration scenarios. The Maximum Entropy algorithm was used (Test AUC of 0.84 ± 0.0228) based on seven environmental non-correlated variables and non-autocorrelated presence-only records (n = 342). The percentage of native vegetation (positive influence), elevation (positive influence) and density of roads (negative influence) were considered the most important environmental variables to the model. Model projections to restoration scenarios reflected the high positive relationship between pumas and native vegetation. These projections identified new high suitability areas for pumas (probability of presence >0.5) in highly deforested regions. High suitability areas were increased from 5.3% to 8.5% of the total State extension when the landscapes were restored for ≥ the minimum native vegetation cover rule (20%) established by the Brazilian Forest Code in private lands. This study highlights the importance of a landscape planning approach to improve the conservation outlook for pumas and other species, including not only the establishment and management of protected areas, but also the habitat restoration on private lands. Importantly, the results may inform environmental policies and land use planning in São Paulo State, Brazil.

Highlights

  • Humans dominate the earth, negatively impacting on the survival of many wildlife species [1]

  • These humanmodified landscapes are heterogeneous mosaics of land uses such as agricultural lands, urban areas, roads, watercourses and remnant patches of native vegetation [3] which can be managed for the conservation of biodiversity, even if most of the native vegetation has been converted to human land uses [4]

  • Percentage of native vegetation, elevation and density of roads were considered the three most important environmental variables to the model prediction. They had the highest relative contributions, the highest regularized training gain when used in isolation in the Jackknife test and the highest AUC values when used in isolation

Read more

Summary

Introduction

Humans dominate the earth, negatively impacting on the survival of many wildlife species [1]. Puma (Puma concolor), gray wolf (Canis lupus lupus) and maned wolf (Chrysocyon brachyurus) have been found in many different types of land-use around the world, such as pasture, croplands and even urban areas [6], [7], [8] This coexistence of large carnivores and humans causes conflicts, such as retaliatory killing by humans due to livestock predation, for example, of lynx (Lynx linx) [9], wolf (Canis lupus) [10], lion (Panthera leo), leopard (Panthera pardus) and spotted hyena (Crocuta crocuta) [11], puma and jaguar (Panthera onca) [12], [13]. To incorporate human-modified landscapes into a new conservation paradigm to resolve conflicts between people and large predators around the globe [14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call