Abstract

AbstractThe 2007 Energy Independence and Security Act mandates a five‐fold increase in US biofuel production by 2022. Given this ambitious policy target, there is a need for spatially explicit estimates of landscape suitability for growing biofuel feedstocks. We developed a suitability modeling approach for two major US biofuel crops, corn (Zea mays) and switchgrass (Panicum virgatum), based upon the use of two presence‐only species distribution models (SDMs): maximum entropy (Maxent) and support vector machines (SVM). SDMs are commonly used for modeling animal and plant distributions in natural environments, but have rarely been used to develop landscape models for cultivated crops. AUC, Kappa, and correlation measures derived from test data indicate that SVM slightly outperformed Maxent in modeling US corn production, although both models produced significantly accurate results. When compared with results from a mechanistic switchgrass model recently developed by Oak Ridge National Laboratory (ORNL), SVM results showed higher correlation than Maxent results with models fit using county‐scale point inputs of switchgrass production derived from expert opinion estimates. However, Maxent results for an alternative switchgrass model developed with point inputs from research trial sites showed higher correlation to the ORNL model than the corresponding results obtained from SVM. Further analysis indicates that both modeling approaches were effective in predicting county‐scale increases in corn production from 2006 to 2007, a time period in which US corn production increased by 24%. We conclude that presence‐only methods are a powerful first‐cut tool for estimating relative land suitability across geographic regions in which candidate biofuel feedstocks can be grown, and may also provide important insight into potential land‐use change patterns likely to be associated with increased biofuel demand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.