Abstract

Mining processes generate waste rock, tailings, and slag that can increase potentially toxic metal (PTM) concentrations in soils. Un-reclaimed, abandoned mine sites are particularly prone to leaching these contaminants, which may accumulate and pose significant environmental and public health concerns. The characterization and spatial delineation of PTMs in soils is vital for risk assessment and soil reclamation. Bumpus Cove, a once active mining district of eastern Tennessee, is home to at least 47 abandoned, un-reclaimed mines, all permanently closed by the 1950s. This study evaluated soil physicochemical properties, determined the spatial extent of PTMs (Zn, Mn, Cu, Pb, and Cd), and examined the influence of soil properties on PTM distribution in Bumpus Cove, TN. Soil samples (n = 52) were collected from a 0.67 km2study area containing 6 known abandoned Pb, Zn, and Mn mines at the headwaters of Bumpus Cove Creek. Samples were analyzed for Zn, Mn, Cu, Pb, and Cd by microwave-assisted acid digestion and flame atomic absorption spectrometry (FAAS) (12–1,354 mg/kg Zn, 6–2,574 mg/kg Mn, 1–65 mg/kg Cu, 33–2,271 mg/kg Pb, and 7–40 mg/kg Cd). Of the measured PTMs, only Pb exceeds permissible limits in soils. In addition to the PTM analyses, soil physical (texture, moisture content, and bulk density) and chemical (pH, cation exchange capacity (CEC), and total organic carbon (TOC)) properties were evaluated. Spatially weighted multivariate regression models developed for all PTMs using soil physicochemical properties produced improved results over ordinary least squares (OLS) regression models. Models for Zn (R2 = 0.71) and Pb (R2 = 0.69) retained covariatesepH, moisture content, and CEC (Zn), and pH and CEC (Pb). This study will help define PTM concentration and transport and provide a reference for state and local entities responsible for contaminant monitoring in Bumpus Cove, TN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.