Abstract
In this paper we propose a convex Sum-of-Squares optimization problem for finding outer approximations of forward reachable sets for nonlinear uncertain Ordinary Differential Equations (ODE’s) with either (or both) L2 or point-wise bounded input disturbances. To make our approximations tight we seek to minimize the volume of our approximation set. Our approach to volume minimization is based on the use of a convex determinant-like objective function. We provide several numerical examples including the Lorenz system and the Van der Pol oscillator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.