Abstract

BackgroundRelapse prevention in bipolar disorder can be improved by monitoring symptoms in patients' daily life. Smartphone apps are easy-to-use, low-cost tools that can be used to assess this information. To date, few studies have examined the usefulness of smartphone data for monitoring symptoms in bipolar disorder.ObjectiveWe present results from a pilot test of a smartphone-based monitoring system, Social Information Monitoring for Patients with Bipolar Affective Disorder (SIMBA), that tracked daily mood, physical activity, and social communication in 13 patients. The objective of this study was to investigate whether smartphone measurements predicted clinical symptoms levels and clinical symptom change. The hypotheses that smartphone measurements are (1) negatively related to clinical depressive symptoms and (2) positively related to clinical manic symptoms were tested.MethodsClinical rating scales were administered to assess clinical depressive and manic symptoms. Patients used a smartphone with the monitoring app for up to 12 months. Random-coefficient multilevel models were computed to analyze the relationship between smartphone data and externally rated manic and depressive symptoms. Overall clinical symptom levels and clinical symptom changes were predicted by separating between-patient and within-patient effects. Using established clinical thresholds from the literature, marginal effect plots displayed clinical relevance of smartphone data.ResultsOverall symptom levels and change in clinical symptoms were related to smartphone measures. Higher overall levels of clinical depressive symptoms were predicted by lower self-reported mood measured by the smartphone (beta=-.56, P<.001). An increase in clinical depressive symptoms was predicted by a decline in social communication (ie, outgoing text messages: beta=-.28, P<.001) and a decline in physical activity as measured by the smartphone (ie, cell tower movements: beta=-.11, P=.03). Higher overall levels of clinical manic symptoms were predicted by lower physical activity on the smartphone (ie, distance travelled: beta=-.37, P<.001), and higher social communication (beta=.48, P=.03). An increase in clinical manic symptoms was predicted by a decrease in physical activity on the smartphone (beta=-.17, P<.001).ConclusionsClinical symptoms were related to some objective and subjective smartphone measurements, but not all smartphone measures predicted the occurrence of bipolar symptoms above clinical thresholds. Thus, smartphones have the potential to monitor bipolar disorder symptoms in patients’ daily life. Further validation of monitoring tools in a larger sample is needed. Conclusions are limited by the low prevalence of manic and depressive symptoms in the study sample.Trial RegistrationInternational Standard Randomized Controlled Trial Number (ISRCTN): 05663421; http://www.controlled-trials.com/ISRCTN05663421 (Archived by WebCite at http://www.webcitation.org/6d9wsibJB)

Highlights

  • Bipolar disorder is a serious and disabling psychiatric condition that encompasses a broad group of disorders

  • Higher overall levels of clinical depressive symptoms were predicted by lower self-reported mood measured by the smartphone

  • An increase in clinical depressive symptoms was predicted by a decline in social communication and a decline in physical activity as measured by the smartphone

Read more

Summary

Introduction

Bipolar disorder is a serious and disabling psychiatric condition that encompasses a broad group of disorders. International lifetime prevalence estimates indicate that bipolar disorders are present in 1-5% of the general population [1]. It involves mood, behavioral, and cognitive disruptions during episodes of depression, mania, or hypomania. The recurrent and chronic nature of bipolar disorder results in a high burden of disease [2,3,4] and high societal costs [5]. Relapse prevention in bipolar disorder can be improved by monitoring symptoms in patients' daily life. Few studies have examined the usefulness of smartphone data for monitoring symptoms in bipolar disorder

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call