Abstract

Organic phase change materials are used in actuators like wax motors. The solid→liquid phase transition that drives expansion is commonly induced by resistive heating that requires an electrical connection. The use of light to generate a phase change provides a non-contact way to power wax motors. Here, it is demonstrated that small molecules can act as absorbers to enable a photoinduced solid→liquid melting transition in eicosane, a low molecular weight phase change material. Three different small molecule absorbers are utilized: (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), azobenzene (AZOB), and guaiazulene (GAZ). The GAZ/eicosane mixture is characterized in detail because its absorption extends out to 750nm, opening up the possibility of using near-infrared diodes as the photon source. The GAZ/eicosane composite is incorporated into a commercial wax motor assembly and 532nm laser light is used to lift up to 400g. The temporal response, work and force output, and efficiency are measured, and no loss of lifting capability or degradation is observed after ten cycles of irradiation. The incorporation of small aromatic molecules with low-energy absorption features into phase change materials can provide a general way to make light powered wax motors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.