Abstract
Distinct differences between how model proteins interact in-cell and in vitro suggest that the cytosol might have a profound effect in modulating protein-protein and/or protein-ligand interactions that are not observed in vitro. Analyses of in-cell NMR spectra of target proteins interacting with physiological partners are further complicated by low signal-to-noise ratios, and the long overexpression times used in protein-protein interaction studies may lead to changes in the in-cell spectra over the course of the experiment. To unambiguously resolve the principal binding mode between two interacting species against the dynamic cellular background, we analyzed in-cell spectral data of a target protein over the time course of overexpression of its interacting partner by using single-value decomposition (SVD). SVD differentiates between concentration-dependent and concentration-independent events and identifies the principal binding mode between the two species. The analysis implicates a set of amino acids involved in the specific interaction that differs from previous NMR analyses but is in good agreement with crystallographic data.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.