Abstract
Induced pluripotent stem cells (iPSCs) provide a great model to study the process of stem cell reprogramming and differentiation. Single-cell RNA sequencing (scRNA-seq) enables us to investigate the reprogramming process at single-cell level. Here, we introduce single-cell entropy (scEntropy) as a macroscopic variable to quantify the cellular transcriptome from scRNA-seq data during reprogramming and differentiation of iPSCs. scEntropy measures the relative order parameter of genomic transcriptions at single cell level during the process of cell fate changes, which show increase tendency during differentiation, and decrease upon reprogramming. Hence, scEntropy provides an intrinsic measurement of the cell state, and can be served as a pseudo-time of the stem cell differentiation process. Moreover, based on the evolutionary dynamics of scEntropy, we construct a phenomenological Fokker-Planck equation model and the corresponding stochastic differential equation for the process of cell state transitions during pluripotent stem cell differentiation. These equations provide further insights to infer the processes of cell fates changes and stem cell differentiation. This study is the first to introduce the novel concept of scEntropy to quantify the biological process of iPSC, and suggests that the scEntropy can provide a suitable macroscopic variable for single cells to describe cell fate transition during differentiation and reprogramming of stem cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.