Abstract

Data scarcity has always been a significant challenge in the domain of human reliability analysis (HRA). The advancement of simulation technologies provides opportunities to collect human performance data that can facilitate both the development and validation paradigms of HRA. The potential of simulator data to improve HRA can be tapped through the use of advanced machine learning tools like Bayesian methods. Except for Bayesian networks, Bayesian methods have not been widely used in the HRA community. This paper uses a Bayesian method to enhance human error probability (HEP) assessment in offshore emergency situations using data generated in a simulator. Assessment begins by using constrained noninformative priors to define the HEPs in emergency situations. An experiment is then conducted in a simulator to collect human performance data in a set of emergency scenarios. Data collected during the experiment are used to update the priors and obtain informed posteriors. Use of the informed posteriors enables better understanding of the performance, and a more reliable and objective assessment of human reliability, compared to traditional assessment using expert judgment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.