Abstract

Hardware implementations of arithmetic operators using signed digit arithmetic have lost some of their earlier popularity. However, SD is revisited and used to realise an efficient radix-16 generic multiplier, which has particular potential for low-power implementation. The SD multiplier algorithm reduces the number of partial products to as much as 1/4, and in initial tests reduces the estimated power consumption to only about 50% of that of the Booth multiplier. It is different from other previous high-radix methods in that it employs a novel method to generate its partial products with zero arithmetic logic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.