Abstract

1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) is of concern in water treatment because of its persistence and health effects. A new concept is proposed to synthesize hexagonal mesoporous silica (HMS) with magnetic functionalization for DDT removal from aqueous media. Fe 3O 4 nanocrystals were synthesized by a low-temperature solvothermal process, and then encapsulated in mesoporous silica through a packing approach, forming core–shell structured Fe 3O 4@HMS microspheres. The synthesized materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and nitrogen adsorption–desorption techniques. The results indicate that the silica shell conserves mesoporous structure after the removal of surfactant templates. Different from previous studies, the thickness, pore volume and surface area of silica shell can be controlled by adjusting the reaction condition. These Fe 3O 4@HMS materials show high adsorption capacity and fast adsorption rate for DDT. Because of the useful magnetic property and unique mesoporous structure, the synthesized materials provide a fast, convenient and highly efficient means to remove DDT from aqueous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.