Abstract

The first order conditional estimation (FOCE) method is still one of the parameter estimation workhorses for nonlinear mixed effects (NLME) modeling used in population pharmacokinetics and pharmacodynamics. However, because this method involves two nested levels of optimizations, with respect to the empirical Bayes estimates and the population parameters, FOCE may be numerically unstable and have long run times, issues which are most apparent for models requiring numerical integration of differential equations. We propose an alternative implementation of the FOCE method, and the related FOCEI, for parameter estimation in NLME models. Instead of obtaining the gradients needed for the two levels of quasi-Newton optimizations from the standard finite difference approximation, gradients are computed using so called sensitivity equations. The advantages of this approach were demonstrated using different versions of a pharmacokinetic model defined by nonlinear differential equations. We show that both the accuracy and precision of gradients can be improved extensively, which will increase the chances of a successfully converging parameter estimation. We also show that the proposed approach can lead to markedly reduced computational times. The accumulated effect of the novel gradient computations ranged from a 10-fold decrease in run times for the least complex model when comparing to forward finite differences, to a substantial 100-fold decrease for the most complex model when comparing to central finite differences. Considering the use of finite differences in for instance NONMEM and Phoenix NLME, our results suggests that significant improvements in the execution of FOCE are possible and that the approach of sensitivity equations should be carefully considered for both levels of optimization.

Highlights

  • Nonlinear mixed effects (NLME) models are suitable in situations where sparse time-series data is collected from a population of individuals exhibiting inter-individual variability [10]

  • Considering the use of finite differences in for instance NONMEM and Phoenix nonlinear mixed effects (NLME), our results suggests that significant improvements in the execution of first order conditional estimation (FOCE) are possible and that the approach of sensitivity equations should be carefully considered for both levels of optimization

  • Based on the theory presented in the previous section, we propose an alternative implementation of the FOCE and FOCE with interaction (FOCEI) methods for parameter estimation of NLME models based on differential equations

Read more

Summary

Introduction

Nonlinear mixed effects (NLME) models are suitable in situations where sparse time-series data is collected from a population of individuals exhibiting inter-individual variability [10] This property has rendered NLME models popular in both pharmacokinetics and pharmacodynamics, and several public and commercial software packages have been developed for performing NLME modeling within these fields [13]. With the FOCE and FOCEI methods, the approximation of the integral involves a Taylor expansion around the values of the random effect parameters that maximize the joint distribution This means that one optimization problem per individual has to be solved for every evaluation of the approximated population likelihood. These issues are pronounced for models that are formulated by systems of differential equations which are lacking analytical solutions [4, 7, 8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call