Abstract

Relationships between host species richness and levels of disease in a focal host are likely to be context-dependent, depending on the characteristics of which particular host species are present in a community. I use a multi-host epidemiological model with environmental transmission to explore how the characteristics of the host species (e.g., competence and competitive ability), host density, and the pathogen transmission mechanism affect the proportion of infected individuals (i.e., infection prevalence) in a focal host. My sensitivity-based approach identifies the indirect pathways through which specific ecological and epidemiological processes affect focal host infection prevalence. This in turn yields predictions about the context-dependent rules governing whether increased host species richness increases (amplifies) or decreases (dilutes) infection prevalence in a focal host. For example, in many cases, amplification and dilution are predicted to occur when added host species are sources or sinks of infectious propagules, respectively. However, if the added host species have strong and asymmetric competitive effects on resident host species, then amplification and dilution are predicted to occur when the added host species have stronger competitive effects on resident host species that are sources or sinks of infectious propagules, respectively. My results also predict that greater dilution and less amplification is more likely to occur under frequency-dependent direct transmission than density-dependent direct transmission when (i) the added hosts have lower competence than resident host species and (ii) interspecific competition between the added host species and resident host species is lower; the opposite conditions promote greater amplification and less dilution under frequency-dependent direct transmission. This work helps identify and explain the mechanisms shaping the context-dependent relationships between host species richness and disease in multi-host communities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.