Abstract
In this paper, we introduce a new data representation format for language processing, the syntactic and semantic graphs (SSGs), and show its use for call classification in spoken dialog systems. For each sentence or utterance, these graphs include lexical information (words), syntactic information (such as the part of speech tags of the words and the syntactic parse of the utterance), and semantic information (such as the named entities and semantic role labels). In our experiments, we used written language as the training data while computing SSGs and tested on spoken language. In spite of this mismatch, we have shown that this is a very promising approach for classifying complex examples, and by using SSGs it is possible to reduce the call classification error rate by 4.74% relative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.