Abstract

This study deals with incorporating predictions of sea level rise into practical municipal planning. Predictions of global mean sea level rise can be made with more confidence than many other aspects of climate change science. The world has warmed in the past century, and as a result global mean sea level has risen and is expected to continue to rise. Even so, there are significant uncertainties regarding predictions of sea level. These arise from two main sources: the future amount of greenhouse gases in the atmosphere, and the ability of models to predict the impact of increasing concentrations of greenhouse gases. Current knowledge regarding the effect of global warming on sea level rise is reviewed. Global mean sea level is expected to rise by 3–30 cm by 2040, and 9–88 cm by 2100. An important remaining uncertainty is the future contribution of surface water storage (for example, lakes and reservoirs) to changes in sea level. In addition, there are also significant local sea level effects that need to be taken account in many regions of the globe, including isostatic and tectonic effects. The thermal expansion component of sea level rise is also likely to vary regionally, due to regional differences in the rate of downward mixing of heat and to changes in ocean currents. The current state of planning for sea level rise in Australia is reviewed. While not all coastal municipalities include sea level rise in their planning schemes, the recent adoption in a number of States of new planning schemes with statutory authority creates a changed planning environment for local government. Coastal urban planning needs to take sea level rise into account because its effects will be apparent during the typical replacement time of urban infrastructure such as buildings (before about 70 years). For local planning, ideally a risk assessment methodology may be employed to estimate the risk caused by sea level rise. In many locations, planning thresholds would also have to be considered in the light of possible changes in storm surge climatology due to changes in storm frequency and intensity, and (in some locations) changes to return periods of riverine flooding. In the medium term (decades), urban beaches will need beach re-nourishment and associated holding structures such as sea walls. Changes in storm and wave climatology are crucial factors for determining future coastal erosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call