Abstract

AbstractThis study examines the relationship between frozen hydrometeors and latent heating in model simulations and evaluates the capability of the Weather Research and Forecasting (WRF) Model to reproduce the observed frozen hydrometeors and their relationship to tropical cyclone (TC) intensification. Previous modeling studies have emphasized the importance of both the amount and location of latent heating in modulating the evolution of TC intensity. However, the lack of observations limits a full understanding of its importance in the real atmosphere. Idealized simulations using WRF indicate that latent heating is strongly correlated to the amount of ice water content, suggesting that ice water content can serve as an observable proxy for latent heat release in the mid- to upper troposphere. Based on this result, satellite observations are used to create storm-centered composites of ice water path as a function of TC intensity. The model reasonably captures the vertical and horizontal distribution of ice water content and its dependence upon TC intensity, with differences typically less than 20%. The model also captures the signature of increased ice water content for intensifying TCs, suggesting that observations of ice water content provide a useful diagnostic for understanding and evaluating model simulations of TC intensification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.