Abstract
In interactive graphics it is often necessary to introduce large changes in the image in response to updated information about the state of the system. Updating the local state immediately would lead to a sudden transient change in the image, which could be perceptually disruptive. However, introducing the correction gradually using smoothing operations increases latency and degrades precision. It would be beneficial to be able to introduce graphic updates immediately if they were not perceptible. In the paper the use of saccade-contingent updates is exploited to hide graphic updates during the period of visual suppression that accompanies a rapid, or saccadic, eye movement. Sensitivity to many visual stimuli is known to be reduced during a change in fixation compared to when the eye is still. For example, motion of a small object is harder to detect during a rapid eye movement (saccade) than during a fixation. To evaluate if these findings generalize to large scene changes in a virtual environment, gaze behavior in a 180 degree hemispherical display was recorded and analyzed. This data was used to develop a saccade detection algorithm adapted to virtual environments. The detectability of trans-saccadic scene changes was evaluated using images of high resolution real world scenes. The images were translated by 0.4, 0.8 or 1.2 degrees of visual angle during horizontal saccades. The scene updates were rarely noticeable for saccades with a duration greater than 58 ms. The detection rate for the smallest translation was just 6.25%. Qualitatively, even when trans-saccadic scene changes were detectible, they were much less disturbing than equivalent changes in the absence of a saccade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.