Abstract

Prior to emergence in human populations, zoonoses such as SARS cause occasional infections in human populations exposed to reservoir species. The risk of widespread epidemics in humans can be assessed by monitoring the reproduction number R (average number of persons infected by a human case). However, until now, estimating R required detailed outbreak investigations of human clusters, for which resources and expertise are not always available. Additionally, existing methods do not correct for important selection and under-ascertainment biases. Here, we present simple estimation methods that overcome many of these limitations. Our approach is based on a parsimonious mathematical model of disease transmission and only requires data collected through routine surveillance and standard case investigations. We apply it to assess the transmissibility of swine-origin influenza A H3N2v-M virus in the US, Nipah virus in Malaysia and Bangladesh, and also present a non-zoonotic example (cholera in the Dominican Republic). Estimation is based on two simple summary statistics, the proportion infected by the natural reservoir among detected cases (G) and among the subset of the first detected cases in each cluster (F). If detection of a case does not affect detection of other cases from the same cluster, we find that R can be estimated by 1-G; otherwise R can be estimated by 1-F when the case detection rate is low. In more general cases, bounds on R can still be derived. We have developed a simple approach with limited data requirements that enables robust assessment of the risks posed by emerging zoonoses. We illustrate this by deriving transmissibility estimates for the H3N2v-M virus, an important step in evaluating the possible pandemic threat posed by this virus. Please see later in the article for the Editors' Summary.

Highlights

  • The 2009 A(H1N1)pdm09 influenza pandemic [1], the SARS epidemic in 2003 [2], and the recent emergence of a novel coronavirus [3] are recent reminders of the global health threat posed by zoonotic viruses

  • We illustrate this by deriving transmissibility estimates for the H3N2v-M virus, an important step in evaluating the possible pandemic threat posed by this virus

  • Prior to widespread emergence in human populations, such pathogens can cause occasional infections in subpopulations that have been exposed to reservoir species

Read more

Summary

Introduction

The 2009 A(H1N1)pdm influenza pandemic [1], the SARS epidemic in 2003 [2], and the recent emergence of a novel coronavirus [3] are recent reminders of the global health threat posed by zoonotic viruses. Prior to widespread emergence in human populations, such pathogens can cause occasional infections in subpopulations that have been exposed to reservoir species (common reservoir species include for example bats, birds, swine, non-human primates). Zoonotic viruses are viruses that are transmissible from animals to humans; the global health threat of zoonotic viruses was recently demonstrated by the 2009 H1N1 influenza pandemic and the SARS epidemic in 2003. Zoonotic viruses primarily cause occasional infections in human populations exposed to reservoir species (the animal species harboring the virus) because the pathogens are usually poorly adapted for sustained human-to-human transmission. The authors developed a novel method to estimate a standard measure of transmissibility, the human-to-human reproduction number R (average number of persons infected by a human case) of a zoonotic virus, which overcomes many of the limitations of existing methods

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call