Abstract

BackgroundCandida parapsilosis is one of the most common causes of Candida infection worldwide. However, the genome sequence annotation was made without experimental validation and little is known about the transcriptional landscape. The transcriptional response of C. parapsilosis to hypoxic (low oxygen) conditions, such as those encountered in the host, is also relatively unexplored.ResultsWe used next generation sequencing (RNA-seq) to determine the transcriptional profile of C. parapsilosis growing in several conditions including different media, temperatures and oxygen concentrations. We identified 395 novel protein-coding sequences that had not previously been annotated. We removed > 300 unsupported gene models, and corrected approximately 900. We mapped the 5' and 3' UTR for thousands of genes. We also identified 422 introns, including two introns in the 3' UTR of one gene. This is the first report of 3' UTR introns in the Saccharomycotina. Comparing the introns in coding sequences with other species shows that small numbers have been gained and lost throughout evolution. Our analysis also identified a number of novel transcriptional active regions (nTARs). We used both RNA-seq and microarray analysis to determine the transcriptional profile of cells grown in normoxic and hypoxic conditions in rich media, and we showed that there was a high correlation between the approaches. We also generated a knockout of the UPC2 transcriptional regulator, and we found that similar to C. albicans, Upc2 is required for conferring resistance to azole drugs, and for regulation of expression of the ergosterol pathway in hypoxia.ConclusionWe provide the first detailed annotation of the C. parapsilosis genome, based on gene predictions and transcriptional analysis. We identified a number of novel ORFs and other transcribed regions, and detected transcripts from approximately 90% of the annotated protein coding genes. We found that the transcription factor Upc2 role has a conserved role as a major regulator of the hypoxic response in C. parapsilosis and C. albicans.

Highlights

  • Candida parapsilosis is one of the most common causes of Candida infection worldwide

  • Strand-specific libraries were prepared from some samples grown in normoxia and hypoxia, and for a wildtype strain and a strain carrying a knockout of an ortholog of the Candida albicans UPC2 transcription factor, a major regulator of ergosterol synthesis and the hypoxic response [22,23,24]

  • We describe the first comprehensive annotation of the C. parapsilosis genome, which is supported by expression analysis

Read more

Summary

Introduction

Candida parapsilosis is one of the most common causes of Candida infection worldwide. C. parapsilosis isolates were believed to be highly heterogeneous, and were divided into Groups I, II and III [10,11]. Sequencing the C. parapsilosis genome revealed that there are very few differences between the diploid chromosomes, with only one single nucleotide polymorphism (SNP) per 15,553 bases [15]. This may indicate that the species has undergone a recent population bottleneck, perhaps related to the lack of a sexual cycle, and the loss of one mating type [15,16,17]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.