Abstract

Flixweed (Descurainia sophia) is a weed that seriously affects wheat fields in China. Over the past 20 years, it has evolved resistance to the herbicide tribenuron-methyl. In the present study, a resistant D. sophia population with a Pro-197-Thr mutation of acetolactate synthetase (ALS) was found to have a resistance index of 457.37 for tribenuron-methyl. Under the same growth conditions, the seeds of resistant (R) and susceptible (S) populations exhibited similar vitality but the germination rates of R seeds were higher than those of S seeds. This result demonstrated that seed dormancy periods were shorter in the R seeds. RNA-Seq transcriptome analysis was then used to choose candidate genes that could regulate seed dormancy pathways in the R population. A total of 504,976,046 clean reads were selected from nine RNA-Seq libraries and assembled into 79,729 unigenes. Among these, 33,476 unigenes were assigned to 51 GO subgroups, and 26,117 unigenes were assigned to 20 KEGG secondary metabolic pathways. Next, 2473 differentially expressed genes (DEGs) were divided into three groups, as follows: G-24 h (germinating seeds) vs. D (dormant seeds); G-48 h (germinated seeds) vs. D; and G-48 h vs. G-24 h. From these 2473 DEGs, 8 were selected as candidate dormancy unigenes for the R population if their expression levels continuously decreased during the seed germination progress and their functional annotations were related to plant seed dormancy. One candidate unigene was annotated as CYP707A2; two unigenes were annotated as the transcription factors TGA4 and TGA2; one unigene was annotated as the cystathionine beta-synthase gene; and four unigenes could not be annotated as any gene listed in the six public databases. However, qRT-PCR-validated results showed that, during the germination of R seeds, the expression of the three candidate unigenes first decreased and then increased, indicating that they may have other growth-regulating functions in R populations. In brief, the dormancy function of the eight candidate dormancy unigenes needs to be further studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.