Abstract

Recent research has suggested that the case-control study design, unlike the self-controlled study design, performs poorly in controlling confounding in the detection of adverse drug reactions (ADRs) from administrative claims and electronic health record (EHR) data, resulting in biased estimates of the causal effects of drugs on health outcomes of interest (HOI) and inaccurate confidence intervals. Here we show that using rich data on comorbidities and automatic variable selection strategies for selecting confounders can better control confounding within a case-control study design and provide a more solid basis for inference regarding the causal effects of drugs on HOIs. Four HOIs are examined: acute kidney injury, acute liver injury, acute myocardial infarction and gastrointestinal ulcer hospitalization. For each of these HOIs we use a previously published reference set of positive and negative control drugs to evaluate the performance of our methods. Our methods have AUCs that are often substantially higher than the AUCs of a baseline method that only uses demographic characteristics for confounding control. Our methods also give confidence intervals for causal effect parameters that cover the expected no effect value substantially more often than this baseline method. The case-control study design, unlike the self-controlled study design, can be used in the fairly typical setting of EHR databases without longitudinal information on patients. With our variable selection method, these databases can be more effectively used for the detection of ADRs.

Highlights

  • To enable doctors, patients and regulators to make informed decisions regarding the costs and benefits of drugs, it is important to thoroughly understand the risk that they pose of adverse drug reactions (ADRs)

  • In Observational Medical Outcomes Partnership (OMOP)'s analyses of observational methods for detection of ADRs, in general area under the curve (AUC) were found to be lowest for ALI and highest for AKI, with AMI and GIU in between [1]

  • As in OMOP's results, AUCs are lowest for ALI, and low for GIU

Read more

Summary

Introduction

Patients and regulators to make informed decisions regarding the costs and benefits of drugs, it is important to thoroughly understand the risk that they pose of adverse drug reactions (ADRs). Randomized clinical trials provide much of the available information on the safety of a drug in humans before regulatory bodies approve the drug. These studies are often underpowered to detect rare ADRs, ADRs occurring in patients with comorbidities or taking other medications that may have been underrepresented in the clinical trials, or ADRs that occur after drug use of long duration. Continuing surveillance for ADRs has commonly been conducted using spontaneous reporting systems, which contain reports of suspected ADRs by medical professionals and consumers. These systems have limitations, including underreporting and biased reporting [2, 3]. An alternative tool for this surveillance that has been the subject of recent research, and which facilitates a complementary method for detection of ADRs, is the use of administrative claims and electronic health record (EHR) data in observational studies to retrospectively identify drugs that cause ADRs (for a review, see [4], chapter 14)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.