Abstract

This paper introduces a two stage stochastic programming to address strategic hub location decisions and tactical flight routes decisions for various customer classes considering uncertainty in demands. We considered the airline network with the arc capacitated single hub location problem based on complete–star p-hub network. In fact, the flight routes are allowed to stop at most two different hubs. The first stage of the model (strategic level) determines the network configuration, which does not change in a short space of time. The second stage is dedicated to specify a service network consists of determining the flight routes and providing booking limits for all itineraries and fare classes after realization of uncertain scenarios. To deal with the demands uncertainty, a stochastic variations caused by seasonally passengers’ demands through a number of scenarios is considered. Since airline transportation networks may face different disruptions in both airport hubs and communication links (for example due to the severe weather), proposed model controls the minimum reliability for the network structure. Due to the computational complexity of the resulted model, a hybrid algorithm improved by a caching technique based on genetic operators is provided to find a near optimal solution for the problem. Numerical experiments are carried out on the Turkish network data set. The performance of the solutions obtained by the proposed algorithm is compared with the pure GA and Particle Swarm Optimization (PSO) in terms of the computational time requirements and solution quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.